Наши Cookies

Мы используем cookies, чтобы обеспечить вам лучший опыт работы с сайтом за счет персонализированного контента, релевантной рекламы и расширенных функций. Нажав «разрешить все», вы соглашаетесь на использование cookies в соответствии с политикой использования cookies. Вы сможете изменить свое решение в любой момент.

Что я буду изучать?

With the rapid development of smart sensors, smartphones and social media, 'big' data is ubiquitous. This MSc teaches the foundations of GIScience, databases, spatial analysis, data mining and analytics to equip professionals with the tools and techniques to analyse, represent and model large and complex spatio-temporal datasets. Students will be equipped with computational foundations and skills needed for big data analytics including visualisation, prediction, clustering and simulation with statistical and machine learning approaches, as well as retrieving and mining big (open) data, web services and cloud computing, web and mobile applications, all by practising with real case data and open software.

Careers

Graduates from this programme are expected to find positions in consultancy, local government, public industry, and the information supply industry, as well as in continued research. Possible career paths could include: data scientist in the social media, finance, health, telecoms, retail or construction and planning industries; developer of spatial tools and specialised spatial software; researcher or entrepreneur.

Employability

Graduates will be equipped with essential principles and technical skills in managing, modelling, spatial and spatial-temporal analysis, visualising and simulating 'big' spatio-temporal data, with emphasis on real development skills including: Java, JavaScript, Python and R, Business Intelligence (BI) skills will also be taught via practical case studies and close collaborations with leading industrial companies and institutions. All these skills are highly valued in big data analysis.

Optional qualifications

This degree is also available as a PG Diploma with fees set accordingly.

На каком факультете я буду учиться?

Engineering Sciences

Варианты обучения

Очная (1 год)

Цена
£32,100.00 (2,431,818 руб) за 1 год
Это фиксированная стоимость
Начало обучения

26 Сентябрь 2022

Где

UCL (University College London)

Gower Street,

London,

Camden,

WC1E 6BT, England

Вступительные требования

Для студентов, проживающих в Соединенных Штатах

Students need to have Bachelor's degree with a final CGPA of 3.3/4.0 for courses requiring Upper second-class (2:1) degree. For courses requiring Lower second-class (2:2) degree, they need to have a final CGPA of 3.0/4.0

Для иностранных студентов

A minimum of an upper second-class UK Bachelor's degree in a relevant discipline (such as engineering, mathematics, computer science, environmental science, human or physical geography, geology, forestry, oceanography, or physics) or an overseas qualification of an equivalent standard. Applicants with relevant professional experience are also considered.Overall grade of 6.5 with a minimum of 6.0 in each of the subtests. Overall score of 92 with 24/30 in reading and writing and 20/30 in speaking and listening.

Требования к IELTS могут отличаться в зависимости от выбранного курса

ДОБАВИТЬ В ШОРТ-ЛИСТ

Оставайтесь на связи